Q1.Consider the following scheme of reactions.

(a) Give the IUPAC name for compound **P** and that for compound **Q**.

P.....

Q

(b) The conversion of ${\bf P}$ into ${\bf Q}$ in Reaction 1 uses HCl

Name and outline a mechanism for this reaction.

(5)

(2)

(5)

(c) The conversion of \boldsymbol{Q} into \boldsymbol{R} in Reaction 2 uses NH_3

Name and outline a mechanism for this reaction.

(d) State the type of reaction shown by Reaction 3.Identify a reagent for this reaction.

	Give one condition necessary for a high yield of product when Q is converted into P .	
		(3)
(e)	Hydrogen bromide (HBr) could be used in the overall conversion of P into R , instead of using HCl	
	Hydrogen bromide is made by the reaction of NaBr with concentrated phosphoric acid.	
	Concentrated sulfuric acid is not used to make HBr from NaBr	
	Write an equation for the reaction of NaBr with H_3PO_4 to produce HBr and Na_3PO_4 only.	
	Identify \textbf{two} toxic gases that are formed, together with HBr, when NaBr reacts with concentrated H_2SO_4	
	State the role of H ₂ SO ₄ in the formation of these two toxic gases.	
	(Total 19 m	(4) arks)

Q2.Consider the following reactions.

substance X

(a) Name and outline a mechanism for Reaction 1.

Name of mechanism

Mechanism

(5)

(b) Name and outline a mechanism for Reaction 2.

Name of mechanism

Mechanism

(1)

	(c)	State the type of reaction in Reaction 3. Give the name of substance X .					
		()	2)				
	(d)	The haloalkane produced in Reaction 1 can be converted back into propene in an elimination reaction using ethanolic potassium hydroxide.					
		KOH CH₃CHBrCH₃ → H₂C=CHCH₃					
		Outline a mechanism for this conversion.					
		() (Total 15 marks)	3) s)				
Q3 .2-	03.2 brome 2 methylpentane is heated with notassium hydravide dissolved in ethanel. Two						
Q 0.2	3.2-bromo-2-methylpentane is heated with potassium hydroxide dissolved in ethanol. Two structural isomers are formed.						
	(a)	State the meaning of the term structural isomers .					

(b)	Name and draw the mechanism for the formation of one of the isomers.				
	Name of mechanism				
	Mechanism				

(5) (Total 6 marks)

Q4.Haloalkanes are used in the synthesis of other organic compounds.

- (a) Hot concentrated ethanolic potassium hydroxide reacts with 2-bromo-3-methylbutane to form two alkenes that are structural isomers of each other. The major product is 2-methylbut-2-ene.
 - (i) Name and outline a mechanism for the conversion of 2-bromo-3-methylbutane into 2-methylbut-2-ene according to the equation.

$$(CH_3)_2CHCHBrCH_3$$
 + KOH \longrightarrow $(CH_3)_2C=CHCH_3$ + KBr + H_2O

Name of mechanism

Mechanism

	(ii)	Draw the displayed formula for the other isomer that is formed.			
			(1)		
	(iii)	State the type of structural isomerism shown by these two alkenes.			
			(1)		
(b)	mixture formed when hot concentrated ethanolic potassium hydroxide reacts wit 2-bromo-3-methylbutane. Compound X has the molecular formula C ₅ H ₁₂ O and is a secondary alcohol.				
	(i)	Draw the displayed formula for X .	(1)		
	(ii)	Suggest one change to the reaction conditions that would increase the yield of X .	(1)		
	(iii)	State the type of mechanism for the conversion of 2-bromo-3-methylbutane into ${\bf X}$.			
			(1)		

(iv) Identify \mathbf{one} feature of this infrared spectrum of a pure sample of \mathbf{X} that may

be used to confirm that **X** is an alcohol. You may find it helpful to refer to **Table 1** on the Data Sheet.

Feature	 	 	 	

(1) (Total 10 marks)