Q1.Consider the following scheme of reactions. (a) Give the IUPAC name for compound **P** and that for compound **Q**. P..... Q (b) The conversion of ${\bf P}$ into ${\bf Q}$ in Reaction 1 uses HCl Name and outline a mechanism for this reaction. (5) (2) (5) (c) The conversion of \boldsymbol{Q} into \boldsymbol{R} in Reaction 2 uses NH_3 Name and outline a mechanism for this reaction. (d) State the type of reaction shown by Reaction 3.Identify a reagent for this reaction. | | Give one condition necessary for a high yield of product when Q is converted into P . | | |-----|--|--------------| (3) | | | | | | (e) | Hydrogen bromide (HBr) could be used in the overall conversion of P into R , instead of using HCl | | | | Hydrogen bromide is made by the reaction of NaBr with concentrated phosphoric acid. | | | | Concentrated sulfuric acid is not used to make HBr from NaBr | | | | Write an equation for the reaction of NaBr with H_3PO_4 to produce HBr and Na_3PO_4 only. | | | | Identify \textbf{two} toxic gases that are formed, together with HBr, when NaBr reacts with concentrated H_2SO_4 | | | | State the role of H ₂ SO ₄ in the formation of these two toxic gases. | (Total 19 m | (4)
arks) | **Q2.**Consider the following reactions. substance X (a) Name and outline a mechanism for Reaction 1. Name of mechanism Mechanism (5) (b) Name and outline a mechanism for Reaction 2. Name of mechanism Mechanism (1) | | (c) | State the type of reaction in Reaction 3. Give the name of substance X . | | | | | | |---------------|---|--|----------|--|--|--|--| | | | | | | | | | | | | () | 2) | | | | | | | (d) | The haloalkane produced in Reaction 1 can be converted back into propene in an elimination reaction using ethanolic potassium hydroxide. | | | | | | | | | KOH CH₃CHBrCH₃ → H₂C=CHCH₃ | | | | | | | | | Outline a mechanism for this conversion. | ()
(Total 15 marks) | 3)
s) | | | | | | | | | | | | | | | Q3 .2- | 03.2 brome 2 methylpentane is heated with notassium hydravide dissolved in ethanel. Two | | | | | | | | Q 0.2 | 3.2-bromo-2-methylpentane is heated with potassium hydroxide dissolved in ethanol. Two structural isomers are formed. | | | | | | | | | (a) | State the meaning of the term structural isomers . | (b) | Name and draw the mechanism for the formation of one of the isomers. | | | | | |-----|---|--|--|--|--| | | Name of mechanism | | | | | | | Mechanism | | | | | | | | | | | | (5) (Total 6 marks) **Q4.**Haloalkanes are used in the synthesis of other organic compounds. - (a) Hot concentrated ethanolic potassium hydroxide reacts with 2-bromo-3-methylbutane to form two alkenes that are structural isomers of each other. The major product is 2-methylbut-2-ene. - (i) Name and outline a mechanism for the conversion of 2-bromo-3-methylbutane into 2-methylbut-2-ene according to the equation. $$(CH_3)_2CHCHBrCH_3$$ + KOH \longrightarrow $(CH_3)_2C=CHCH_3$ + KBr + H_2O Name of mechanism Mechanism | | (ii) | Draw the displayed formula for the other isomer that is formed. | | | | |-----|---|--|-----|--|--| | | | | (1) | | | | | (iii) | State the type of structural isomerism shown by these two alkenes. | | | | | | | | (1) | | | | (b) | mixture formed when hot concentrated ethanolic potassium hydroxide reacts wit 2-bromo-3-methylbutane. Compound X has the molecular formula C ₅ H ₁₂ O and is a secondary alcohol. | | | | | | | (i) | Draw the displayed formula for X . | (1) | | | | | (ii) | Suggest one change to the reaction conditions that would increase the yield of X . | (1) | | | | | (iii) | State the type of mechanism for the conversion of 2-bromo-3-methylbutane into ${\bf X}$. | | | | | | | | (1) | | | (iv) Identify \mathbf{one} feature of this infrared spectrum of a pure sample of \mathbf{X} that may be used to confirm that **X** is an alcohol. You may find it helpful to refer to **Table 1** on the Data Sheet. | Feature |
 |
 |
 | | |---------|------|------|------|--| | | | | | | | | | | | | | |
 |
 |
 | | (1) (Total 10 marks)